
PFP Lab C: Sudoku—in parallel
John Hughes

Introduction
In this lab you will solve Sudoku1 puzzles—but you don’t need to write (another) Sudoku solver. You
will find one in sudoku.erl. There are a number of problems, of varying difficulty, in problems.txt;
problems are represented as Erlang data-structures, like this:

{wildcat,
 [[0,0,0,2,6,0,7,0,1],
 [6,8,0,0,7,0,0,9,0],
 [1,9,0,0,0,4,5,0,0],
 [8,2,0,1,0,0,0,4,0],
 [0,0,4,6,0,2,9,0,0],
 [0,5,0,0,0,3,0,2,8],
 [0,0,9,3,0,0,0,7,4],
 [0,4,0,0,5,0,0,3,6],
 [7,0,3,0,1,8,0,0,0]]}.

Each problem is a list of nine lists, each of nine elements, where elements from 1 to 9 represent
fixed digits in the problem, and zeroes represent spaces where a digit is to be filled in. Calling

sudoku:benchmarks().

solves each puzzle 100 times, and measures both the time to solve each puzzle (in ms), and the time
to run all the benchmarks (in µs).

4> sudoku:benchmarks().
{80425000,
 [{wildcat,0.68},
 {diabolical,65.18},
 {vegard_hanssen,144.55},
 {challenge,9.93},
 {challenge1,521.99},
 {extreme,13.13},
 {seventeen,48.79}]}

This is expected to take around a minute.

Your task is to speed up the benchmarks using parallelism.

Running benchmarks in parallel
The most obvious way to speed up the benchmarks/0 function is to solve the different puzzles in
parallel. Implement this idea, and measure the speedup you obtain for benchmarks/0. Use
percept to visualize the parallelism you get, and submit your modified source code, the output of
the sequential and the parallel benchmark, and a percept graph showing the parallelism you

1 If, by some mischance, you are still unfamiliar with Sudoku, look up the rules in Wikipedia.

obtain. Compute the speedup you obtain, and report how many cores and what type of machine you
used. What can you say about the results?

Note that you should not parallelize the repeat/1 function, which solves each puzzle a large
number of times. The reason for repeat/1 is just to make your benchmark run a bit longer, so that
you can make more accurate measurements and get more accurate percept graphs—if you
parallelize repeat, then you defeat the purpose of the exercise. You may change the number of
repetitions of each solving (?EXECUTIONS) to suit the machine you are running on: the benchmarks
should run for long enough that you can measure their time accurately, but not so long that you
spend a lot of time waiting for them to finish.

Understanding the solver
Because the puzzles take a varying length of time to solve, and we cannot tell in advance which
puzzles will be the slowest to solve, then just running a sequential solver several times in parallel will
not give the best speedup. Rather, we should make the solver itself parallel. To do so, we must
understand how it works.

Puzzle representations
The problems supplied as input are matrices containing zeroes in the unknown positions, but they
are converted to ”partial solutions”, by fill/1, in which unknown elements are replaced by a list of
possible values. Think of this as ”filling in each square with the values that might appear there”. The
solver itself operates on these partial solutions, gradually removing elements from the lists of
possible values, until each list has only a single element—at which point the value in the square is
known, and the puzzle is solved.

Refining partial solutions
Given a partial solution, one way to refine it is to remove from each set of possible values, all the
values already known to occur in the same row, the same column, and the same block. If no values
remain in any square, then the puzzle cannot be solved; if there is exactly one value remaining in a
set of values, then that must be the value in that square. The function refine/1 applies this idea
repeatedly to a partial solution, until no more values can be removed from any set by this method.
This method alone is sufficient to solve easy puzzles such as wildcat:

8> sudoku:refine(sudoku:fill(Wildcat)).
[[4,3,5,2,6,9,7,8,1],
 [6,8,2,5,7,1,4,9,3],
 [1,9,7,8,3,4,5,6,2],
 [8,2,6,1,9,5,3,4,7],
 [3,7,4,6,8,2,9,1,5],
 [9,5,1,7,4,3,6,2,8],
 [5,1,9,3,2,6,8,7,4],
 [2,4,8,9,5,7,1,3,6],
 [7,6,3,4,1,8,2,5,9]]

Harder problems such as diabolical cannot be completely solved by this method, so the result of
refine/1 still contains unknown squares.

10> sudoku:refine(sudoku:fill(Diabolical)).
[[[1,4,7,9],2,[1,3,4,7],6,[1,3,5,7],8,[1,3,4,9],[4,5],[1,5,9]],
 [5,8,[1,3,4,6],[1,2],[1,3],9,7,[2,4,6],[1,2]],
 …]

However, for each element, we know what the range of possible values are. For example, the top left
element of diabolical must be 1, 4, 7 or 9.

Guessing
Once we have drawn all the inferences we can by refinement, we simply pick a square, and guess
what the value in it might be. We have a list of possible values in the square, so we can just guess
each one of those in turn, and see if we can solve the resulting puzzle recursively. If we fail to solve
the puzzle for our first guess, then we try the second guess instead, and so on. If we can’t solve the
puzzle for any guessed value, then the puzzle as a whole is insoluble.

Which square should we pick, to guess the value of? Well, since we know how many guesses we will
have to try for each square, then we can pick one of the squares with the fewest possible guesses, to
keep the cost of the search as low as possible. The function guess/1 chooses a square in a matrix
to guess by this method. The function guesses/1 returns a list of resulting matrices, after
refinement, with the easiest matrix first. (It’s possible, of course, that one guessed value for a square
leads to much more helpful refinement of other squares than another. It makes sense to try the
helpful guesses first!).

Finally, the function solve_refined/1 applies the whole recursive search algorithm to solve a
puzzle completely, raising an exception if it is not solvable. We assume that the matrix given to
solve_refined/1 has already been refined, because this is the case in the recursive calls; the
top-level function solve/1 just refines its argument and then calls solve_refined/1.

Read the code in sudoku.erl, try it out, and make sure you understand it.

Parallelizing the solver
Your goal now is to speed up the solution of one puzzle using parallelism. There are several
opportunities for parallelism in the solver algorithm above:

• When refining the rows of a matrix, we could refine all the rows in parallel
• We could refine the rows, columns, and blocks of a matrix in parallel, and then take the

intersection of the results
• We could explore the different possible guess values for the guessed square in parallel

These are three possibilities: there may well be more. Experiment with these methods, and measure
the speedups you obtain. Use the sequential version of the benchmark/0 function to measure
your speedups in this part of the exercise, so that the times you measure are the times to solve one
puzzle with all your available cores—the only parallelism you use should be inside the solver itself.

Submit your parallelized code, together with a brief description of the methods you used to
parallelize it. Include the output of running the parallel benchmarks, together with a description of
the machine used to run them, and a copy of the output of the sequential benchmark on the same
machine. Compute the speedup for solving each puzzle, and the geometric mean of all your
speedups. The best speedup wins bragging rights!

Enjoy!

	PFP Lab C: Sudoku—in parallel
	Introduction
	Running benchmarks in parallel
	Understanding the solver
	Puzzle representations
	Refining partial solutions
	Guessing

	Parallelizing the solver

